Horizontal Field Mapping System

FMU-MRI Product Introduction

MAGNETIC FIELD MAPPING SYSTEM FOR HORIZONTAL BORE MAGNETS

- RRI's FMU-MRI system, used for mapping static magnetic fields in Horizontal-bore, MRI magnets
- Operates on 1H NMR and a heli-spherical NMR probe actuator.
- Digitally synthesized RF with FAST-SWEEP NMR Spectrometer with 10 MHz range
- The spectrometer operates from below 5 MHz (0.12 Tesla) to above 1500 MHz (35 Tesla).

MAGNETIC FIELD MAPPING SYSTEM MAIN OPERATING PROPERTIES

- Operation at proton (H-1)resonance frequency
- Equipped with a heli-spherical path electro-mechanical probe and designed for a single sample operation.
- •High resolution stepper motor under computer control with 1600 steps per revolution
- •The heli-cylindrical probe actuator was designed for use in bore diameters between 200 and 1200 mm.
- Use of the spherical-path probe is very efficient and result in data suitable for axial and radial component analysis simultaneously.
- System completes a full mapping and analysis cycle in less than 30 minutes.

Mapping Probe Parameters

Older version shown

Probe trajectory HELISPHERICAL

Radius 75-250mm

Pitch 9.8 deg

Length 1600 mm

Sample size 1 mm³

HELISPHERICAL SAMPLE TRAJECTORY

Mapper Principles of Operation

- Magnet center and probe orientation by difference plot, typically ZX
- Shim calibration by difference plot and spherical harmonic analysis
- Results stored in .STR files

- Shim convergence by matrix inversion using the .STR files
- Option for remote shim power supply operation
- Residual gradient calculation with SD error

Shim Calibration by Difference plot

- Acquire magnet Map 1 with shim setting to Value 1
- Acquire magnet Map 2 with shim setting to Value 2
- Automated difference map plot
- Spherical harmonic coefficient calculation
- Store data

Mapping setup of 9.4T/800 Courtesy Dr. Keith Thulborn UIC

Difference Plot of ZX Shim

Typical Spherical Harmonic Coefficient Analysis of a Map (shown 750 MHz vertical bore)

```
Results of Analysis
                                           2007-12-24 14:59:04
                                           c:\user\mit75sc\map16.dat
Gradient
           z0 =
                     -1478.71
                                 +/-
                                         3.55
                                                    Hz/cm^n
                      -147.46
                                         3.11
Gradient
            z =
                                 +/-
                                                    Hz/cm^n
                       151.04
                                 +/-
                                         4.17
Gradient
           z2 =
                                                    Hz/cm^n
                       -21.79
Gradient
           z3 =
                                 +/-
                                         4.91
                                                    Hz/cm^n
Gradient
           z4 =
                        -3.02
                                 +/-
                                         6.64
                                                    Hz/cm^n
           z5 =
                       0.0000
Gradient
           z6 =
Gradient
                       0.0000
Gradient
           z7 =
                       0.0000
Gradient
           z8 =
                       0.0000
           z9 =
Gradient
                       0.0000
Gradient z10 =
                       0.0000
Gradient
          z11 =
                       0.0000
Gradient
            x =
                       -45.99
                                 +/-
                                         5.36
                                                    Hz/cm^n
                        93.22
                                 +/-
                                         5.38
Gradient
            y =
                                                    Hz/cm^n
           zx =
                       878.85
                                 +/-
                                         8.01
Gradient
                                                    Hz/cm^n
Gradient
           zy =
                      -113.18
                                 +/-
                                         8.11
                                                    Hz/cm^n
Gradient
           c2 =
                         4.64
                                 +/-
                                         6.61
                                                    Hz/cm^n
          s2 =
                                 +/-
Gradient
                         9.18
                                         6.60
                                                    Hz/cm^n
Gradient z2x =
                         3.55
                                 +/-
                                         6.08
                                                    Hz/cm^n
                                         6.29
Gradient z2y =
                        -5.07
                                 +/-
                                                    Hz/cm^n
Gradient
         zc2 =
                        -5.68
                                 +/-
                                         5.58
                                                    Hz/cm^n
Gradient zs2 =
                        -3.81
                                         5.56
                                 +/-
                                                    Hz/cm^n
          c3 =
                        -1.90
                                 +/-
                                         5.66
                                                    Hz/cm^n
Gradient
                         5.52
                                         5.64
Gradient
          s3 =
                                 +/-
                                                    Hz/cm^n
Gradient z3x =
                        -6.89
                                 +/-
                                         8.04
                                                    Hz/cm^n
                         4.97
                                         8.58
Gradient z3y =
                                 +/-
                                                    Hz/cm^n
Gradient z2c2 =
                       -27.59
                                 +/-
                                         7.30
                                                    Hz/cm^n
Gradient z2s2 =
                       -11.60
                                 +/-
                                         7.27
                                                    Hz/cm^n
Gradient
         zc3 =
                         2.31
                                 +/-
                                         6.58
                                                    Hz/cm^n
                         5.50
                                         6.50
Gradient
                                                    Hz/cm^n
Sum of squared residuals is 44306.7
Correlation coefficient is 0.999517
RMS uncertainty is 6.307
```


7 T 900 mm Bore Magnet – raw field

Couresy of Dr. Alan Koretsky NIH

Plot of Final SC Convergence on 45 cm DSV

Final RT Convergence with 17 channel shims on 45 cm DSV

Final RT Convergence ppm contour plot

(MathLab post-processing)

Final RT Convergence 1H Hz contour plot in X-Y plane

Final RT Convergence 1H Hz contour plot in Z-X plane

Final RT Convergence 1H Hz contour plot in Z-Y plane

Other Functions

- Drift measurement
 - Single point frequency plotted against time
- Multiple map repeat and analysis
- Probe tuning
- Extended analysis and map editing options
- Shim simulations
- Shim power calculations
- Passive shimming as service by RRI

Magnet Ramp Power Supply

MXR-800

- Output: 880A @ 12V
- Programmable ramp sequences
- Ramp rates adjustable up to 120A/min in 1A increments
- 20mA current resolution
- Quench detection circuit
- Programmable switch heater current up to 1A
- Reinforced shippable enclosure

Thank you for your attention

